SAE Aero Design

Project Proposal

By Ali Alqalaf, Jasem Alshammari, Dong Yang Cao, Darren Frankenberger, Steven Goettl, and John Santoro

12/11/2015

Overview

- Introduction
- Problem Definition
 - Need Statement
- Concept Generation
 - Criteria
 - Functional Diagram
 - Sketches
- Project Proposal
 - Wing Design
 - Tail Design
 - Final Components
 - Bill of Materials
- Project Plan
- Conclusions

Introduction

- Build an airplane that adheres to SAE requirements.
- Constraints include a maximum combined dimensions of 175 in, specific payload bay area volume, and must have a 1000 W power limiter
- Implementation of cutting edge design software
- The team has created decision matrices and concepts for the most critical functionalities to determine the best design alternatives
- The design phase has begun, starting with the wing and tail designs.

Need Statement

Northern Arizona University does not have an airplane design to compete in the SAE Aero design competition, so the team is tasked with the design and construction of the airplane.

Project Goals

- Design and build an aircraft that adheres to the SAE Aero competition requirements
- Gain valuable knowledge in the mechanical engineering design and manufacturing processes, specifically in airplane design
- Compile an excellent report detailing the design and manufacturing processes and orally present the final design
- Win the SAE Aero Regular class competition

Objectives

Objective	Measurement	Units of Measurement
Carry max payload	Weight	Pounds Force (lbf)
Carry a payload from point A to B	Distance	Feet (ft)
Small turning radius	Distance	Feet (ft)

Constraints

- Freestanding aircraft must not exceed a combined length, width and height of 175 in
- Aircraft must be powered by a commercially available lithium-polymer battery pack
- Must use a new 2015 version 1000 W power limiter provided by Neumotors.com
- Interior payload bay must be smooth and dimensions must be 10"x4" x4" (length, width, height) with a tolerance of +0.125"

Constraints

- Payload must be secured to an airframe, with payload plates
- Airplane must land and take off within 200 ft
- Must complete all tasks within 180 s

Criteria

Airfoil

- Coefficient of Lift (max)
- Design Lift Coefficient
- Coefficient of Drag
- Lift-to-Drag Ratio
- Lift Curve Slope (max)
- Pitching Moment Coefficient
- Stall Quality

Wing Placement Configuration

- Weight
- Loading
- Coefficient of Lift (max)
- Coefficient of Drag (min)
- Lift-to-Drag Ratio

Vertical and Horizontal Stabilizers

- Stability Coefficient
- Pitching Control
- Yaw Control
- Weight

Functional Diagram

Concept Generation - Wing Placement Configuration

MONOWING LOW PLACEMENT

MONOWING HIGH PLACEMENT

BIPLANE

Concept Generation - Vertical and Horizontal Stabilizers

Final Components

• Motor - AXI 5325/16 GOLD LINE

• Propeller - APC 18x12WE

• ESC/BEC-CASTLE CREATIONS Phoenix Edge 75

Final Components

• Battery-Eflight 3200mAh 6S 22.2V 30C LiPo, 12AWG EC3

• Receiver-AR610 6-Channel DSMX Aircraft Receiver (SPMAR610)

• Servos-Extra High Torque Servo (SPMS601H)

	× .	0						0
General	Motor Cooling: medium	# of Motors: 1 (on same Battery)	Model Weight:4536g160oz	T	Wing Area: 96.8 dm² 1500 in²	Field Elevation 500 m ASL 1640 ft ASL	Air Temperature 25 °C 77 °F	Pressure (QNH): 1013 hPa 29.91 inHg
Battery Cell	Type (Cont. / max. C) - charge state: LiPo 3300mAh - 30/45C ▼ - normal ▼	Configuration: 6 S 1 P	Cell Capacity: 3300 mAh	Total Capacity: 3300 mAh	Resistance: 0.0052 Ohm	Voltage: 3.7 V	C-Rate: 30 C cont. 45 C max	Weight: 93 g 3.3 oz
Controller	Type: CC Phoenix Edge 75	cont. Curent:	max. Curent: 75 A		Resistance: 0.010 Ohm			Weight: 114 g 4 oz
Motor	Manufacturer - Type (Kv): AXI ▼ 5325/16 (350) ▼ search	KV (w/o torque): 350 rpm/V	no-load Current: 2.1 A @ 30 V	Limit (up to 15s): 85 A ▼	Resistance: 0.026 Ohm	Case Length: 59 mm 2.32 inch	# mag. Poles: 14	Weight: 575 g 20.3 oz
Propeller	Type - yoke twist: APC Electric E • 0° •	Diameter: 18 inch	Pitch: 12 inch	# Blades: 2	PConst / TConst: 1.08 / 1.0	Gear Ratio:	Flight Speed: 32.2 km/h 20 mph	calculate

20.21 C

20.12 V

22.20 V

3300 mAh

3.0 min

5.2 min

558 g

19.7 oz

73.26 Wh

Remarks:

Battery Load:

Voltage:

Capacity:

Flight Time:

Mixed Flight Time:

Energy:

Weight:

Rated Voltage:

Motor @ Optimum	Efficiency	y
Current:	33.62	А
Voltage:	20.81	V
Revolutions*:	6725	rpm
electric Power:	699.8	W
mech. Power:	633.1	W
Efficiency:	90.5	%

Motor @ Maximum		
Current:	66.69	А
Voltage:	19.45	V
Revolutions*:	5927	rp
electric Power:	1297.3	W
mech. Power:	1136.6	W
Efficiency:	87.6	%
est. Temperature:	75	°C
	167	°F

100

66.69

Current:

		Propeller	
9	А	Static Thrust:	661
5	V		233
7	rpm	Revolutions*:	592
3	W	Stall Thrust:	384
6	W		135
ô	%	Thrust @ 32.2 km/h:	465
5	°C	Thrust @ 20 mph:	16
7	°F	Pitch Speed:	10
			6
		Tip Speed:	51
			31
		specific Thrust:	2.9

120

75

est. Temperature:

			Total Drive
st:	6615	g	Drive Weight:
	233.3	oz	
S*:	5927	rpm	Power-Weight:
:	3844	g	
	135.6	οz	Thrust-Weight:
2.2 km/h:	4650	g	P(in) @ max:
0 mph:	164	οz	P(out) @ max:
d:	108	km/h	Efficiency @ max:
	67	mph	
	511	km/h	
	317	mph	
rust:	2.96	g/W	
	0.1	oz/W	

1 2	
⁰ 1.46 ³	
Thrust-Weight:	

> ⁰	108	50
		/
Pite	ch Spee	ed:

km/h

		Airplane		
1372	g	All-up Weight:	4536	g
48.4	oz		160	ΟZ
326	W/kg	Wing Load:	47	g/dm²
148	W/lb		15.4	oz/ft²
1.46	: 1	Cubic Wing Load:	4.8	
1480.5	W	est. Stall Speed:	33	km/h
1136.6	W		20	mph
76.8	%	est. Speed (level):	97	km/h
			60	mph
		est. Speed (vertical):	33	km/h
			20	mph
		est. rate of climb:	10.1	m/s
			1982	ft/min

Motor Partial Load													
Propeller rpm	Throttle %	Current (DC) A	Volage (DC) V	el. Power W	Efficiency %	Thrust g	Spec. Thrust g/W	Pitch Speed km/h	Thrust oz	Spec. Thrust oz/W	Pitch Speed mph	Flight Time (85%) min	
800	11	0.3	22.2	6.2	45.3	121	19.6	15	4.3	0.69	9	599.9	
1200	17	0.7	22.2	14.8	63.9	271	18.4	22	9.6	0.65	14	250.2	
1600	22	1.4	22.2	30.0	74.5	482	16.1	29	17.0	0.57	18	122.9	
2000	28	2.5	22.1	54.1	80.6	753	13.9	37	26.6	0.49	23	67.8	
2400	34	4.1	22.1	89.6	84.1	1085	12.1	44	38.3	0.43	27	40.8	
2800	40	6.4	22.0	138.9	86.2	1476	10.6	51	52.1	0.37	32	26.2	
3200	47	9.5	21.9	204.5	87.4	1928	9.4	59	68.0	0.33	36	17.7	
3600	53	13.6	21.8	288.9	88.1	2440	8.4	66	86.1	0.30	41	12.4	
4000	60	18.7	21.6	394.9	88.4	3013	7.6	73	106.3	0.27	45	9.0	
4400	67	25.2	21.4	525.1	88.5	3646	6.9	81	128.6	0.24	50	6.7	
4800	75	33.2	21.2	682.3	88.4	4339	6.4	88	153.0	0.22	55	5.1	
5200	83	42.9	20.9	869.2	88.2	5092	5.9	95	179.6	0.21	59	3.9	
5600	92	54.9	20.5	1088.9	88.0	5905	5.4	102	208.3	0.19	64	3.1	
5927	100	66.7	20.1	1297.3	87.6	6615	5.1	108	233.3	0.18	67	2.5	

Motor Characteristic at Full Throttle

Bill of Materials

tems	Quantity	Description	Cost
Motor	1	AXI 5325/16 GOLD LINE	\$299.99
Motor mount	1	N/A	
Propeller	1	APC 18x12WE	\$11.72
Nose gear	1	Nose Gear with Nose Gear Mount Block (HAN1306)	\$4.99
Landing gear	1	Constructing at machine shop	
ESC/BEC	1	CASTLE CREATIONS Phoenix Edge 75	\$101.96
Battery	1	Eflight 3200mAh 6S 22.2V 30C LiPo, 12AWG EC3	\$99.99
Arming plug	1	SAE 2016 Arming Safety Harness	\$30.00
Power limiter	1	SAE Limiter V2 2016	\$50.00
Receiver	1	AR610 6-Channel DSMX Aircraft Receiver (SPMAR610)	\$49.99
Servos	5	Extra High Torque Servo (SPMS601H)	\$44.99
Y-harness	2	Y-Harness: Telemetry (SPM1516)	\$5.99
Wheels (2 orders)	4	Big Wheels, 4" (DUB400RV)	\$15.49
Balsa dowels	10	3/16" x 3' balsa dowels	\$57.80
Balsa sheeting	6	Balsa Sheet 3/16 x 12 x 36	\$112.59
Pine spar	2	2in.x4in.x10ft Kiln-Dried Heat Treated Spruce-Pine-Fir Lumber (161659)	\$4.05
Aluminum tubing	1	36 in. x 1/2 in. x 1/16 in. Aluminum Round Tube	\$10.67
Aluminum sheeting	n/a	3/16" Aluminum Scraps	Donated
1/32-in nylon-coated cable	1	Loos Galvanized Steel Wire Rope, Nylon Coated, 7x7 Strand Core	\$12.16
ABS	29.58in^3	\$250/52in^3	\$142.22
TOTAL			\$1,054.60

Project Plan

Task	W 1	W 2	W 3	W 4	W 5	W 6	W 7	W 8	W 9	W 10	W 11	W 12	W 13	W 14	W 15
Client meeting															
Define problem and layout															
project plan															
Research design															
Research protocol writing															
Research parts of design															
Functional diagram															
Concept Generation															
Decision Matrix															
Sketch Parts															
Pick a final design (decision matrix)															
Proof of Concept Discussion															
Project Proposal Discussion															
Finalize design															
Problem Definition and Project Plan Presentations				•											
Concept Generation and															
Selection Presentations															
Proof of Concept															1
Demonstrations			ļ									ļ	ļ		
Project Proposal															25
Presentations														Ľ	-

Conclusions

- The wing design has been finalized and will be submitted for printing in the next week
- A tail design has been presented and will be finalized
- Final components of the aircraft, such as the motor and propeller have been decided
- An estimate of the cost of the aircraft has been proposed with a bill of materials
- The team will finish design and construction into next semester

References

[1] What-When-How, "Tail design", Conventional Tail, T-tail, Dual Tail, Triple Tail and Twin Tail. Available: what-when-how. com.

[2] National Aeronautics and Space Administration, "structures and materials", aircraft background, P3-4.

[3] P. J. Pritchard, Introduction to Fluid Mechanics 8th Edition. Fox and McDonald. Wiley, 2011.

[4] M. H. Sadraey, Aircraft design: a systems engineering approach. Hoboken, New Jersey: Wiley, 2012.

[5] "Airfoil Tools," Airfoil Tools. [Online]. Available at: http://airfoiltools.com/. [Accessed: 2015].

[6] Flight calculations. Ecalc Calc for Airplanes. [Online]. Available at: http://www.ecalc.ch/